Showing posts with label Mikhail Gorbanev. Show all posts
Showing posts with label Mikhail Gorbanev. Show all posts

Tuesday, December 17, 2024

2025-2027 Oil Price Decline Linked to Solar Cycle Activity | Vladimir Belkin

This study of solar-terrestrial relationships compares the years of the solar cycle based on Wolf sunspot numbers and the arithmetic averages of crude oil prices from 1970 to 2023 (solar cycles 20-25), all presented in a single chart. Mean annual Wolf numbers were sourced from the Solar Influences Data Analysis Center (SIDC), while Brent crude oil price data (adjusted to 2021 dollars) was obtained from BP and the Federal Reserve Economic Data website for 2022-2023.

Order of years in solar cycles and crude oil prices for the period 1970-2023.
Very strong correlation (coefficient 0.9908)
 
Using this data, the above diagram was created to illustrate the very strong correlation (coefficient 0.9908) between crude oil prices and the ordinal years of the solar cycles for the period 1970-2023.
 

Since 2024 marks the fifth year of the current Solar Cycle #25, it corresponds to an average forecast Brent oil price of $74.18 per barrel. In 2025, the sixth year of the cycle, the projected price is $56.04. In 2026, the seventh year of the cycle, the forecast is $43.84, while the anticipated price for 2027 is $42.84.
 
Reference: 
 

Sunspot Number 2018 into 20
32 (NASA, updated December 5, 2024).
 

Thursday, October 20, 2022

Physical Factors of the Historical Process | Alexander Chizhevsky

In 1924 Russian scientist Alexander Chizhevsky advanced a theory claiming that the solar activity cycles affected all of human history. He drew insight from the striking observation that two Russian revolutions of the early XX century (in 1905-07 and 1917) and several major European revolutions of the XIX century (in 1830, 1848, and 1871) occurred in the years of maximum solar activity. 
 

To justify his conviction, Chizhevsky scrutinized the available sunspot records and solar observations comparing them to riots, revolutions, battles and wars in Russia and 71 other countries for the period from 500 B.C. to 1922 A.D. He proposed to divide the eleven-year solar cycle into four phases:

  1. 3-year period of minimum activity (around the solar minimum) characterized by passivity and “autocratic rule”;
  2. 2-year period during which people “begin to organize” under new leaders and “one theme”;
  3. 3-year period (around the solar maximum) of “maximum excitability,” revolutions and wars;
  4. 3-year period of gradual decrease in “excitability,” until people are “apathetic.”
Chizhevsky found that a significant percent of revolutions and what he classified as “the most important historical events” involving “large numbers of people” occurred in the 3-year period around sunspot maximums. Through his further studies, Chizhevsky came to believe that correlations with the solar cycles could be found for a very diverse set of natural phenomena and human activities. In his book, he compiled a list of as many as 27 of them that supposedly fluctuated with the solar cycle, ranging from crop harvests to epidemic diseases to mortality rates. According to his studies, the periods of maximum solar activity were generally associated with negative effects such as lower harvests, intensification of diseases (including psychological ones), and higher mortality rates. However, Subsequent studies generally did not confirm the strength and scope of all the links between solar activity and various physical and social processes claimed by Chizhevsky.

Even as the link between solar activity and revolutions was not as strong as originally claimed by Chizhevsky, it appeared to be able to withstand a statistical test. In 1992 Russian scientist Putilov analyzed large samples of historical events mentioned in the chronology sections of two of the largest Soviet historical encyclopedias (numbering nearly 13,000 events in one book and 4,600 in another). He classified the events into four groups on the dimensions of “tolerance” (e.g., riot-reform) and “polarity” (e.g., civil war-external war). Putilov found that frequency and “polarity” of historical events increased in the year of the maximum of the sunspot cycle and in the next year after it, particularly when compared with the year of the minimum and the year before the minimum. The probability of revolution (the most polar and intolerant of historical events) was the highest during the maximum and the lowest in the year before a minimum of solar activity, with very high statistical significance. The results suggested that solar activity does impact historic events, particularly in the years of sunspot maximums. 
 
In Chizhevsky’s own words (translated):

Alexander Chizhevsky (1922) - The principles of modern natural science have urged me to investigate whether or not there is a correlation between the more important phenomena of nature and events in the social-historical life of mankind. In this direction, beginning in the year 1915, I have performed a number of researches, but at present I am submitting to the public only those which are directed towards determining the connection between the periodical sun-spot activity and (1) the behavior of organized human masses and (2) the universal historical process. The following facts are based upon statistics gathered by me while submitting to a minute scrutiny the history of all the peoples and states known to science, beginning with the V century B. C. and ending with the present day.

1. As soon as the sun-spot activity approaches its maximum, the number of important mass historical events, taken as a whole, increases, approaching its maximum during the sun-spot maximum and decreasing to its minimum during the epochs of the sun-spot minimum.

2. In each century the rise of the synchronic universal military and political activity on the whole of the Earth's territory is observed exactly 9 times. This circumstance enables us to reckon that a cycle of universal human activity embraces 11 years (in the arithmetical mean). The fluctuation's mean curves of the universal historical process on all the surface of the Earth during the period from V century B.C. till XX century A.D. (along the abscissa axis are marked the years, along the ordinate axis – the quantity of important historical events. Dots mark the pretelescopic and later – astronomical data of the sun-spot maximum. Hyphens mark its minimum):
 

Parallelism of the curves of sun-spot activity (below) and the universal human military-political activity (above) from 1749 till 1922:
 

3. Each cycle according to its historical psychological signs is divided into 4 parts (periods):

I. Minimum of excitability: 3 years;
II. Growth of excitability: 2 years;
III. Maximum of excitability: 3 years;
IV. Decline of excitability: 3 years;
 

The number of historical events in each cycle is distributed approximately according to the data for 500 years (XV—XX cent.) in the following manner (in the mean):

I.  period: 5%;
II
.  period: 20%;
III
.  period: 60%;
IV. period: 15%.

Schematic Summary of Properties of a Complete Historiometric Cycle:


4. The course and development of each lengthy historical event is subject to fluctuations (periods of activity and inactivity) in direct dependence upon the periodical fluctuations occurring in the sun's activity. Formula: the state of predisposition of collective bodies towards action is a function of the sun-spot periodical activity.

5. Episodic leaps or rises in the sun's activity, given the existence in human societies of politico-economical and other exciting factors, are capable of calling forth a synchronic rising in human collective bodies. Formula: the rising of the sun-spot activity transforms the people's potential energy into kinetic energy.

My studies in the sphere of synthesizing historical material have enabled me to determine the following morphological law of the historical process:

6. The course of the universal historical process is composed of an uninterrupted row of cycles, occupying a period equaling in the arithmetical mean 11 years and synchronizing in the degree of its military-political activity with the sun-spot activity. Each cycle possesses the following historio-psychological peculiarities:

a. In the middle points of the cycle's course the mass activity of humanity all over the surface of the Earth, given the presence in human societies of economical, political or military exciting factors, reaches the maximum tension, manifesting itself in psycomotoric pandemics:  revolutions, insurrections, expeditions, migrations etc., creating new formations in the existence of separate states and new historical epochs in the life of humanity. It is accompanied by an integration of the masses, a full expression of their activity and a form of government consisting of a majority.
b. In the extreme points of the cycle's course the tension of the all-human military-political activity falls to the minimum, ceding the way to creative activity and is accompanied by a general decrease of military or political enthusiasm, by peace and peaceful creative work in the sphere of state organizations, international relations, science and art, with a pronounced tendency towards absolutism in the governing powers and a disintegration of the masses.

7. In correlation with the sun-spot maximum stand:

a. The dissemination of different doctrines political, religious etc., the spreading of heresies, religious riots, pilgrimages etc.
b. The appearance of social, military and religious leaders, reformists etc.
c. The formation of political, military, religious and commercial corporations, associations, unions, leagues, sects, companies etc.

8. It is impossible to overlook the fact that pathological epidemics also coincide very frequently with the sun-spot maximum periods.

9. Thus the existence of dependence between the sun-spot activity and the behavior of humanity should be considered established.

One cycle of all-human activity is taken by me for the first measuring unit of the historical process. The science concerned with investigating the historical phenomena from the above point of view I have named historiometria.

At present I am working on a plan of organizing scientific institutes for determining the influence of cosmic and geophysical factors upon the condition of the psychics of individuals and collective bodies, and devising a working method for them.

A.L. Chizhevsky
November, 1922; 10 Ivanovskaia st., Kaluga, Russia.

Translation:
Sergey Smelyakov (2006) - Chizhevsky's Disclosure: How the Solar Cycles Modulate the History.
 
This article was adopted from:

Wednesday, October 19, 2022

The Heartbeat of the Sun│Valentina V. Zharkova et al.

Valentina V. Zharkova (2016) - We will see it from 2020 to 2053, when the three next cycles will be of a very reduced magnetic field of the sun. Basically, what happens is these two waves, they separate into the opposite hemispheres and they will not be interacting with each other, which means that resulting magnetic field will drop dramatically nearly to zero. And this will be a similar condition like in the Maunder Minimum.
 

What will happen to the Earth remains to be seen and predicted because nobody has developed any program or any models of terrestrial response – they are based on this period when the sun has maximum activity — when the sun has these nice fluctuations, and its magnetic field [is] very strong. But we’re approaching the stage when the magnetic field of the sun is going to be very, very small. 

 
See also:
 

Thursday, February 2, 2017

Solar Activity and Economic Recessions | Mikhail Gorbanev

Mikhail Gorbanev (December 2016) - Out of 22 recessions in the US economy identified by the National Bureau of Economic Research (NBER) in 1901-2008, in the years corresponding to solar cycles numbered by astronomers from 14 to 23, eleven recessions began in two years around and after maximum points of those cycles. Moreover, out of 13 of those recessions that began in 1933-2008 (solar cycles 17 to 23), eight – over 60 percent – began in two years around and after solar maximums.


Out of 36 recessions in G7 countries identified by NBER and The Economic Cycle Research Institute (ECRI) in 1965-2008 (solar cycles 20 to 23), 21 – nearly 60 percent – began in 3 years around and after solar maximums.


Since 1933, US economy spent 1/3 of time in recession in about 3 years after solar maximums.


Each of eight solar maximums in 1929-2008 overlapped closely with low points in the US unemployment rate followed by its sharp increase.


Refugee inflows in the EU countries followed solar cycle pattern in 1985-2015. 


Economic conditions in the U.S. and G7 countries deteriorated in 2015-2016, consistent with the historical pattern. Composite Leading Indicators (CLIs) designed by the OECD to give early signals of turning points in the business cycle deteriorated for the U.S., for the G7 countries, and for the entire OECD. 


But no U.S. recession? A pattern observed for over 100 years suggested elevated chances of U.S. recession starting in 2014-15, which did not happen.
 
And no reversal in the U.S. unemployment trend? The historical pattern pointed to possibility that the declining trend in the U.S. unemployment rate would bottom out and reverse in 2014-15, which did not occur. 


In both cases, U.S. Fed’s highly accommodative monetary policy targeted at supporting economic recovery and boosting employment can explain the deviation from the historical pattern. Never before the U.S. Federal Funds rate remained virtually zero for so long even as the economy expanded and unemployment rate declined to its lowest level in many years. 

CLI indices for all G7 countries and the US generally reached their maximums before solar maximums and declined to their troughs in years after it.


For the entire OECD, the concordance between the CLI index and solar cycle looked even more regular. In 1962‐2012, all five solar maximums overlapped with dips in the CLI index, and the index reached its maximum values shortly before the sunspot maximums. When comparing the OECD CLI values across solar cycles, we discovered that standard deviations of the values for these cycles confirmed statistical significance of the indicator’s spike before and trough after the solar maximum. The EURO area CLI index followed broadly the same pattern, thus confirming the link with the solar cycle even when the US economy was excluded. 


Moreover, the dynamic of the CLI indices was broadly consistent among the largest OECD economies. We observed that in Japan, Germany, France, and UK, the CLI indices reached their maximums shortly before or around the solar maximum, and declined to the troughs in the years after it. The exact months of maximums and minimums varied between countries. Apparently, the statistical significance also varied, from the lowest for Japan and highest for Germany and France. 

 
The most important European revolutions of the XIX and XX century overlapped closely with the sunspot maximums. Remarkably, both the Great October Socialist Revolution of 1917 in the Russian Empire and the collapse of Soviet Union in 1991, which could be considered the two most important revolutions of the XX century, both occurred exactly in the years of solar maximums. In France, all the greatest revolutions of the modern times including the Great French Revolution of 1789, the revolutions of 1830 and 1849, and “Paris Commune” in 1871 overlapped very closely with the solar maximums. In America, the secession of the 13 southern US states in 1861 that triggered the bloodiest civil war in the continent’s history occurred in the year of solar maximum. Most recently, the cyclical increase in the solar activity in the currently unfolding 24th solar cycle overlapped closely with the “Arab Spring”, a series of revolutions in the Arab countries in 2010-13, and with revolution in Ukraine in 2013-14.

Monday, March 3, 2014

Sunspots and Stocks | The Big Picture

Most people think the Sun rests at the centre of the solar system, and
that the planets orbit it. This is almost correct, but not quite (HERE).
Historically, most cultures believed that their collective behavior was influenced by the Sun and extraterrestrial cycles. Since 1755, when continuous recording of solar sunspot activity began, a lot of research has been focused on possible impacts of the solar cycle on the climate, weather, agriculture, and consequently also on the financial markets. In the larger social realm, increased violence, crime rate, upheaval, revolutions, and the frequency of military attacks and the intensity of warfare have been linked to the solar cycle and the resulting disturbances in the geomagnetic field (HERE). 

The tidal and electro-magnetic forces exerted on the Sun by the motions of the other planets – primarily by Jupiter and Saturn - are the cause for the cyclic solar activity. Outside of the Sun, Jupiter and Saturn combined contain 92% of the total planetary mass and 86% of the angular momentum. The Sun's radius is 0.0044 astronomical units, while Jupiter and Saturn can move the barycenter as much ~2.2 solar radii away from the center of the Sun. The total angular momentum in the Solar System is constant, while the angular momentum of each individual part of the system referred to the Center of Mass is variable. When Jupiter and Saturn are in conjunction with the Sun, the barycenter is far outside of the Sun. But when both of them are on opposite sides, the barycenter is inside the Sun. Jupiter's magnetosphere extends well beyond Saturn's orbit. If it were not for the presence of the solar field itself, Jupiter's magnetosphere would reach the centre of the solar system. Saturn also has a large magnetosphere, approximately about one-fifth of Jupiter's. The variation in the Sun's motion about the Center of Mass is charcterized by a periodicity of 178.770 years: Every 16 loops about the barycenter the Sun repeats a very similar path. The slight time derivative or torque to this 178.770 year cycle, a time dependant periodic function of +/- 1.05 years is called the torque cycle, determined by nine subsequent synodic periods of Jupiter and Saturn (9 * 19.858 years = 178.720 years) and used by Theodor Landscheidt to forecast sunspot cycles. 

Mikhail Gorbanev (2012): Probably, the earliest recorded hypothesis about the relation between the
solar and business activity was presented in a paper by German astronomer Wilhelm Herschel in 1801,
calling attention to an apparent relationship between sunspot activity and the price of wheat. In
1875 British economist and statistician William Stanley Jevons suggested that there was a relation-
ship between sunspots and business cycle crises. He reasoned that sunspots affect Earth's weather,
which, in turn, influences crops and, therefore, the economy. In 1934 Argentinian Carlos Garcia-
Mata and Felix I. Shaffner revisited the evidence about the links between solar activity and business
cycle in the US. They did not find support for Jevon’s theory about cyclical solar activity affecting
crops. However, they uncovered a statistically significant correlation between the fluctuations in
non-agricultural business activity in the US and the solar cycle.

























Mikhail Gorbanev (2012): Solar maximums are good predictors of US recession, effectively predicting at
least 8 out of 13 recessions between 1935 and 2012. Recessions occurred in the months around and after
the solar maximums much more often than in other periods. Out of 13 recessions in this period, 8 started
in the 2 years around solar maximums, counting from 3 months before until 20 months after them. What
about the remaining 4 recessions that occurred in 1935-2012, including the Great Recession of 2008-09?
The brief recession of 1945 was likely caused by reduction of the US government supply and military orders
in the end of the WWII. And the similar causes likely triggered the recession of 1953-54 after the end of
Korean War (historically, the recessions quite often happened after the end of major wars). The painful
recession of 1974-75 was caused by the oil price shock. And the Great Recession of 2008-09 was triggered
by the collapse of sub-prime lending in the US, which exposed massive overvaluation of the housing stock
and flaws in mortgage lending and securitization practices.

Mikhail Gorbanev (2012): In the 64 years from 1948 to 2012, all 6 periods of sunspot maximums overlapped
with minimums of the US unemployment rate. Moreover, each time the dynamics of unemployment changed
from the declining trend to a rapid increase, with the unemployment rate peaking 2-3 years after the sunspot
maximums.