Showing posts with label Solar Activity. Show all posts
Showing posts with label Solar Activity. Show all posts

Friday, January 9, 2026

"Space-Time Forecasting of Economic Trends" | Muriel and Louis Hasbrouck

The Space-Time Structure, pioneered by the multidisciplinary partnership of Muriel and Louis Hasbrouck, functions as a sophisticated theoretical framework that interprets economic fluctuations through natural wave patterns and solar-electromagnetic forces. Muriel Elizabeth Bruce Hasbrouck (1890-1981), a Canadian scholar of comparative philosophy, intellectually shaped by Walter Russell's cosmogony, and author of the personality study "Pursuit of Destiny," provided the foundational insight into human behavior. 
 
Each 35.8-year cyclic wave from C crest to C crest is divided into 12 periods, covering about 3 years each (2.983 years, 35.796 months, or 1,089.51 days). The C to D period represents uncertainty and fear (as in 1930–1933). D to E brings temporary recovery (as in 1936). F to G is a time of reconstruction wherein psychological factors of the new trend appear (as in 1940–1953). From G, the pull from the peak ahead at C is clearly evident. Minor adjustments at A and B often are misread as threatening a depression (as in 1957 and 1962).
Her 1940 discovery, co-developed with her husband Abraham Louis M. Hasbrouck (1890-1979), established a predictive index for timing radio transmission disturbances—initially tested with Bell Telephone Laboratories—which later expanded to forecast earthquakes, volcanic eruptions, solar flares, and even missile launch failures in the early 1960s. They changed tracks when Louis noticed that many of the dates that Muriel generated coincided with stock market moves. Their scientific rigor was balanced by Louis, a Yale-educated Canadian World War I pilot and World War II officer with a deep background in finance. Having mastered investment at Bonbright and Company before becoming an independent counsel, Louis dedicated himself from 1930 onward to uncovering the natural laws underlying market fluctuations and shifting economic trends.  

 » Economically, it is a WAVE PATTERN of changing trends in collective instinct. «
 
Together, they conceptualized the universe as operating via rhythmic energy waves that constitute a persistent "Field" surrounding Earth. This field is continuously modulated by solar activity, planetary movements, and geomagnetic disturbances, creating a "wave pattern in time" that evokes biological and psychological responses in all living entities. Unlike mechanical or deterministic models, these waves do not repeat in identical cycles; rather, each represents a unique evolutionary progression within natural and human systems. Louis and Muriel Hasbrouck’s Space-Time Forecasting is a long-range economic and market forecasting system based on the premise that future conditions influence the present, rather than markets being driven solely by past data. 
 
The system holds that the Sun is a pulsating electromagnetic source whose energy radiates rhythmically through space, forming a dominant 35.8-year wave with embedded subcycles—most notably a nine-year rhythm divided into building, peak, and declining phases corresponding to economic expansion, inflation, and contraction. Planetary bodies do not cause events directly and are not interpreted symbolically; instead, their electromagnetic fields modulate and channel the solar field, altering the timing and intensity of energy reaching Earth. These interactions generate wave-like disturbances that affect all terrestrial systems, including collective human psychology.
Space-Time Trend Waves represent the changing flow of human energy and motivation at the socio-economic level. Each Wave follows an orderly, recognizable course from one peak of prosperity (C) to the next in about 36 years. Each Wave is divided into 12 interim phases averaging 3 years each, which can be qualitatively evaluated.
 Legend:
C Wave Crest, Prosperity Peak, followed by REVERSAL to D.
D to E Temporary Recovery.
F to G Start of rise toward next peak, with intimations of qualities of the new, incoming trend (as from 1941 to 1953).
G Activation of new trend toward next peak C.
A & B Minor interruptions of upward trend (as in 1957 and 1962).
C Wave Crest, Prosperity Peak.
History shows that during the reversal of trend following each Wave crest (C) new attitudes develop—social, political, and economic. This, as the Space-Time Structure of History reveals, is an important key to the evolution of civilization. Not only history, but modern science today substantiates the application of the Space-Time Structure as a unified field involving a natural linkage between space, time, and human behaviour. A "new hypothesis" in physics declares that such a linkage exists, that the mind of man and the wave properties of the electron are two extremes of the same thing, and that the "wave of the future" can be perceived in the evolutionary structure of the field.
Human behavior, mass sentiment, and markets are treated as electrical systems embedded within this solar-planetary field, making financial markets sensitive indicators of underlying energetic conditions. The Hasbroucks do not predict specific events or prices; they forecast conditions—states of economic pressure, instability, or expansion—analogous to weather forecasting, with events arising only when conditions reach critical thresholds. 
 
Time and space are considered inseparable, and the Space-Time Wave is visualized as a trend-like heartbeat whose expansions, contractions, and inflection points signal systemic transitions such as monetary regime changes. The system is presented as a bridge between electromagnetic field theory and empirical economic pattern recognition, rejecting traditional astrology and claiming validation solely through long-term forecasting consistency rather than short-term speculation.

The 35.8-year Saturn-Neptune cycle exactly matches the crest-to-crest Hasbrouck cycle.

In practical application, the structure identifies predictable cycles—often spanning approximately 35.8 years between peaks—which are further segmented into twelve distinct periods labeled A through G. These phases allow for the identification of critical turning points, such as the 1929 crash or mid-1960s economic shifts, serving as an early warning system for socio-economic disruptions.
 
Despite its predictive nature, the framework rejects fatalism, viewing each wave as a "new adventure" for human advancement rather than an inevitable repetition. By blending elements of physics, psychology, and investment finance, the Space-Time Structure offers a holistic methodology for navigating perpetual change, providing a roadmap for decision-making in finance, policy, and personal strategy.
 
 Muriel and Louis Hasbrouck, 1976.
 
Based on the structure of the 35.8-year Hasbrouck cycle, which spans from one prosperity crest (point C) to the next and is divided into 12 periods of approximately 2.983 years each, the period from early 2026 to around 2037 (around the maximum of solar cycle 26) corresponds to the latter stages of the current cycle commencing at the 2001 crest (around the maximum of solar cycle 23). 
 

Drawing from historical analogies (e.g., the 1929–1965 cycle), this timeframe aligns with the transition from reconstruction to the final upward phases leading to the projected 2037 crest. The phases are characterized below in approximate 3- to 5-year segments, reflecting grouped periods with their economic and psychological attributes:


2026–2029 (G to A phase, continuation of upward trend): This segment follows the activation point (G, around 2025), marking the sustained initiation of a new upward economic trajectory. It is characterized by strengthening trends, emerging optimism, and progressive recovery from prior reconstruction, with psychological factors fostering confidence and innovation toward the next peak.
2029 (A, minor interruption): A brief adjustment period interrupting the upward momentum, akin to historical pauses (e.g., 1957). It involves temporary setbacks, increased caution, or minor economic corrections, driven by psychological shifts toward reevaluation without derailing the overall ascent.
2029–2034 (A to B phase, further progression): Building on the prior interruption, this phase entails continued advancement with incremental adjustments. Economic growth resumes with refined strategies, supported by adaptive psychological responses that emphasize stability and gradual expansion amid evolving trends.
2034 (B, second minor interruption): Similar to the first interruption but later in the cycle (e.g., analogous to 1962), this involves another short-term disruption. It features heightened uncertainty or corrective measures, with psychological elements promoting resilience and preparation for the final push.
2034–2037 (B to C phase, final lead to crest): The concluding segment propels toward the prosperity crest (C, around 2037). It is defined by accelerating upward momentum, culminating in peak prosperity, with psychological drivers of enthusiasm and anticipation facilitating robust economic expansion and trend fulfillment.

For real? In Canada, Bhutan, and Zimbabwe? Time will tell.
 
Reference:

 
» Magnus Dominus noster, et magna virtus eius et Sapientiae eius non est numerus: 
laudate eum coeli, laudate eum Sol, Luna et Planetae, quocunque sensu ad percipiendum, 
quacunque lingua ad eloquendum Creatorem vestrum utamini: Laudate eum 
Harmoniae coelestes, laudate cum vos Harmoniarum detectarum arbitri. «
 
Great is our Lord and great His virtue and of His wisdom there is no number:
 praise Him, ye heavens, praise Him, ye sun, moon, and planets, use every 
sense for perceiving, every tongue for declaring your Creator. Praise Him, 
ye celestial harmonies, praise Him, ye judges of the harmonies uncovered.
 
Harmony of the World, Johannes Kepler, 1619  
 

See also: 

Friday, February 14, 2025

Long-Range Solar Activity Forecast & 2025 US Drought | Theodor Landscheidt

Drought is the most serious physical hazard to agriculture. In the US, the 'Dust Bowl' droughts of the 1930s and 1950s are the most severe examples of the devastating effects of extended periods of dryness. In the 1930s, drought virtually covered the entire Plains for almost a decade. Many crops were damaged by deficient rainfall, high temperatures, strong winds, insect infestations, and dust storms.

» A drought peak is to be expected from 2025 on, and should last about five years. « 
Theodor Landscheidt, 2004.
 
The resulting agricultural depression contributed to the Great Depression's bank closures, business losses, and increased unemployment. These hardships sent economic and social ripples throughout the country. Millions of people migrated from the drought areas in search of work, resulting in conflicts between the newcomers and the long-established residents, as well as overburdened relief and health agencies.
 
»
The sun's varying activity provides a means to predict US droughts many years before.«

[...] It is a notable step forward that the sun's varying activity provides a means to predict US droughts many years before the respective event. I have shown that ENSO (El Niño-Southern Oscillation) events, the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), extremes in global temperature anomalies, drought in Africa, and European floods are linked to cycles in the sun's orbital motion around the center of mass of the solar system. Figure 1 demonstrates that such a relationship also exists between US droughts and solar cycles.

 Figure 1 shows the Palmer Drought Severity Index (PDSI) for the US from 1900 to 2001. Green (GPTC, Greatest Perturbation in Torque Cycle) and blue (LPTC, Least Perturbation in Torque Cycle) triangles mark solar cycle phases. Before 1934, GPTC was linked to droughts, and LPTC to wet periods. After 1934, this reversed, with LPTC linked to droughts and GPTC to wet periods. Figure 2 presents smoothed data from Figure 1, emphasizing the phase reversal after 1934. The pattern has been stable since then, suggesting it will continue for decades.

The brown curve represents the raw monthly values of the Palmer Drought Severity Index (PDSI) for 1900 to 2001. This index was devised by Palmer (1965) to indicate the severity of dry and wet spells over the contiguous US. It uses monthly temperature and precipitation data and the Available Water Content (AWC) of the soil, also called soil-water holding capacity. It is based on the supply-and-demand concept of the water balance equation, taking into account more than just the precipitation deficit at specific locations. It is standardized to local climate, so that it can be applied to any part of the country to demonstrate relative drought and rainfall conditions. The US Department of Agriculture uses it to determine when to grant emergency drought assistance.
 
US Drought Monitor, February 11, 2025.

 
Palmer values lag emerging droughts by several months, but respond reliably to weather conditions that have been abnormally dry or wet. The vertical scale in Figure 1 indicates the percentage of the US area affected by moderate to extreme drought. In 1934 the PDSI reached a maximum value of 63 percent. The green and blue triangles in Figure 1 mark special phases in solar motion cycles that can be computed. 
 
[...] By now, these forecasts have turned out correct without exception. Strangely, this has not sent any ripples throughout official science though it is a proclaimed aim of scientific endeavour to make human life easier by dependable forecasts. The rate of change of the sun’s orbital angular momentum L, the rotary force dL/dt driving the sun’s orbital motion (torque), forms a torque cycle with a mean length of 16 years. Perturbations in the sinusoidal course of this cycle recur at quasi-periodical intervals and mark zero phases of a perturbation cycle (PC) with a mean length of 35.8 years. As to details, I refer to Figure 2 in my on-line paper "Solar Eruptions Linked to North Atlantic Oscillation". In Figure 1 presented here, zero phases of the PC are marked by green triangles and the label GPTC (Greatest perturbation in the torque cycle). Blue triangles labelled LPTC (Least perturbation in the torque cycle) mark phases of minimal perturbation.

» 2025 starts a climate instability not seen since the early 1600s. « Simon Hunt, 2025.

I have shown that these phases indicate the peaks of warm PDO regimes and the coolest phases of cold PDO regimes. In 
Figure 1 they are closely linked to extended dry and wet spells. Obviously, there is a phase reversal in the connection just after the PDSI had reached an exceptionally high value of 63 percent in 1934. The instability inherent in these conditions seems to have contributed to the phase reversal, a phenomenon often observed in solar-terrestrial cycles. Before the phase reversal, GPTC (green triangle) coincided with drought conditions and LPTC (blue triangle) with wet conditions. In the latter case, this is easier to see in Figure 2 with data subjected to 4-year moving window Gaussian kernel smoothing.

After the drought peak in 1934 the relationship is reversed. Now LPTCs (blue triangles) consistently go along with drought peaks and GPTCs (green triangles) with wet periods. This pattern has been stable since 1934 and should continue to be stable for many decades as it is modulated by a cycle of 179 years. So the next extended wet period should begin around 2007 and last about 7 to 8 years, as can be derived from 
Figure 1. A drought peak, indicated by LPTC (blue triangle) is to be expected from 2025 on, and should last about five years.

See also:

Saturday, January 4, 2025

Kondratiev Waves Aligned with Solar Cycles | Leonty Miroshnichenko

If cosmophysical periods influence the climate, changes in crop yields, epidemic disasters, and creative productivity, it is difficult to imagine that these rhythms would not be reflected in the economy. The economic cycles discussed in modern literature on the dynamics of economic indicators are well-known space (natural) periods. It was through the study of variations in economic indicators that it was first understood that the dynamics of such a complex system are not described by a single cycle or rhythm, but by a set of cycles, i.e., a spectrum.

Data on Economic Conditions ("Kondratiev waves") versus Solar Activity (SA) shows that the turning points of
economic fluctuations are closely aligned with some maximums of the Wolf number. The dates of SA maxima
and minima prior to 1749 were reconstructed from indirect historical and geophysical data.

The spectrum of economic cycles exhibits a number of peaks, with the most significant periods being: 3.5, 5.5, 8.0, 11.0, 18.0, 20–22, and 54 years. Short periods (e.g., the 3.5 year Kitchin cycle) can have certain regional characteristics. On the other hand, long economic cycles must apply to the entire global economy. These include the long "Kondratiev waves" (54 years), named after the prominent Russian economist Nikolai Kondratiev (1892–1938). The graph above shows data on economic conditions ("Kondratiev waves") versus solar activity (SA). The turning points of economic fluctuations closely align with some maximums of the Wolf number. The dates of solar activity maxima and minima prior to 1749 were reconstructed from indirect historical and geophysical data.

Updated December 2, 2024.

The "Kondratiev waves" have been clearly traced in the world economic system since the early eighteenth century, appearing in many indicators simultaneously—such as industrial production, wholesale prices, and the number of innovations in industry and agriculture. Although the parameters of these fluctuations change slightly, reflecting evolutionary changes in the world economy, the cyclical nature persists to the present day. There are various theories about the origin and nature of these fluctuations, which indicates that the issue remains unresolved. In this book, we are primarily concerned with the possible connection between the "Kondratiev waves" and solar activity and ecology. In other words, the question arises: Is there synchronism between the peaks of the "Kondratiev waves" and the cosmophysical parameters?

» On average, the difference between the peaks and troughs of solar activity and economic cycles does not exceed six months. «
88% of recessions since the 1800s and 100% of major financial crises occurred during the downturn of sunspot cycles. 

The answer is illustrated in the first graph above. It shows the positions of the extreme points of the long "Kondratiev waves"—their maxima and minima (peaks and dips). These points are determined by analyzing a large dataset characterizing the state of the world economy since the end of the seventeenth century. In this analysis, we considered the results obtained by representatives of various economic schools, each using their own independent economic indicators (indices). The turning points in the trends of the global economy are marked with arrows, and circles indicate the positions of the solar activity (SA) maxima. Dark circles represent those SA maxima located near the extreme points of the "Kondratiev waves," while light circles represent the others.

As shown in the first graph, in only two cases out of 11, the difference between the dates of the black circles (SA) and the dates of the economic peaks and troughs is 3 years. On average, the difference does not exceed half a year. Thus, changes in the world economy are clearly associated with variations in solar activity: when trends in the development of the world economy change, they are almost certain to occur at the maximum of the solar cycle. The pendulum of the economy swings in sync with solar fluctuations. Whether economic oscillations with a half-century period are self-oscillations or exogenous rhythms is secondary. It is evident that the world rhythm is introduced into the economy by Nature.

 
IZMIRAN (ИЗМИРАН – Institute of Radioastronomy and Applied Physics) is an institute within the
Russian Academy of Sciences (Российская академия наук), located near Moscow.
 
The average 11-year sunspot cycle can vary in length, ranging from eight to fourteen years. This cycle occurs due to the Sun’s magnetic poles flipping—north becomes south and vice versa—approximately every 11 years. About 11 years later, the poles reverse again, making the full solar cycle actually a 22-year phenomenon (Hale Cycle)
 
See also:

Saturday, December 28, 2024

Solar Activity and "Violence-from-Below" Events | Suitbert Ertel

Alexander Chizhevsky's 1921 claim of a relationship between solar activity and revolutionary mass behavior is examined. A Master Index of Violence-from-Below Events (MIVE) is compiled, consisting of 2,101 events and 4,000 references extracted from 18 historical sources (chronologies, timelines, etc.) covering the period A.D. 1700–1985. [...] The relationship between solar activity and violence-from-below is found to be highly significant (p < .001). 

A.L. Chizhevsky (1897–1964), Russian scientist, Soviet Gulag prisoner, and founder of heliobiology, a field dedicated to
studying the impact of solar activity on biological, social, and psychological processes. His work spanned experimental
biophysics and hematology (structural analysis of blood). In addition to his scientific pursuits, Chizhevsky wrote poetry,
engaged in literary criticism, and taught history and archaeology.
 
At the 1926 Annual Meeting of the American Meteorological Society, an American participant delivered a paper written in 1921 by Alexander Leonidovich Chizhevsky, who was then a 24-year old Russian scholar. Its bombastic title "The Influence of Cosmic Factors Upon the Behavior of Organized Human Masses, as Well as Upon the Universal Historical Process" appeared laughable. The author claimed that occurrences of social unrest, rebellions, upheavals, revolutions are significantly correlated with solar activity, i.e., with the ups and downs of magnetic turbulence of the sun. In his own words: "The greatest revolutions, wars and other mass movements which have created nations, have given origin to the turning points of history, and have shaken the life of humanity and entire continents, tend to coincide with the periods of the maxima of the sun’s activity". [...] Since 1958, after being rehabilitated from Stalin's Gulag system, Chizhevsky has been acknowledged in Russia and elsewhere as the founder of the discipline of "heliobiology." By then some of his claims had appeared less vaunting and more admissible, especially in medical science circles: Typhus, influenza pandemics, cholera, and other epidemic diseases, as well as the morbidity of animals, were alleged to be correlated with solar activity. Chizhevsky's major claim, however, the correlation of turning points in human history with solar maximum conditions, was deemed unthinkable.
 
Secrets of the Sun — A.L. Chizhevsky's legacy.

[...] In line with Chizhevsky’s hypothesis it is assumed that human behavior, if correlated at all with solar activity, would turn spontaneous and impulsive under helioactive conditions among many people at the same time. The probability of mass activation would increase. Therefore all events indicating "violence-from-below" are regarded pertinent, i.e. spectacular attempts by large groups of people at enforcing changes of their living conditions. The category "violence from below" has been adopted from Johan Galtung who distinguished between (1) violence from below (revolutionary violence); (2) violence from above (counter-revolutionary); (3) horizontal violence between equals over some incompatible goals; and (4) random violence, related neither to interests nor to goals. 
 
» An event is coded violence-from-below if the chronology
refers to it by one or more of the above verbal labels.
«
 
 » The idea of Q-analysis is simple. If historical events are independent of solar activity, their temporal distances from
the nearest solar maximum should be random. Even though a revolution might coincide with a solar maximum due
to chance, this should occur relatively infrequently. For larger numbers of historical turning points, temporal distances
from solar maximum years should not differ from chance expectation. The same applies for solar minimum years. «

Unlike Chizhevsky, we did not lump events of Galtung's four categories together. Thus, all horizontal violence acts were not considered, such as territorial or international wars, which are generally not launched by the people but by institutional authorities. Violence from above was also excluded, except if such occurrences indicated preceding acts of violence from below. Galtung's random violence events (Category 4), such as massacres and pogroms—however rare expressions of mass unrest—were also included. [...] Palace revolts, coups d’états, and similar instances of violence without involvement of the ruled masses remained unconsidered, as well as individual acts of violence directed against authorities without apparent involvement of a larger population (e.g., assassination, terror acts). [...]
 
Conclusions
Evidence has been accumulated in this study supporting the claim of Chizhevsky of a connection between solar activity and violence-from-below. A comprehensive Master Index of Violence Events (the MIVE database) was compiled, and influence of bias was strictly excluded. The procedure of analysis circumvented methodological artifacts arising from autocorrelations. In addition, the distribution generated by randomizations allowed for straightforward significance judgments. Finally, results obtained from genuine data were compared with results obtained from various controls. It turned out that the hypothesized connection between solar activity and violence-from-below is positive (the more solar activity, the more social violence), and the correlation is generally not lagged. 
 
 » The more solar activity, the more social violence, and the correlation is generally not lagged. «
A p-value of less than 0.001 indicates the very strong statistical correlation between solar activity and violence-from-below, 
making the result highly reliable, with the likelihood of the relationship occurring by chance being less than 0.1%.

In sum, history text references to violence-from-below events tend to coincide with the years of maximum solar activity. However, a number of ensuing problems need to be solved:
  1. Physical Variables: Which variables are actually effective? Are solar emissions responsible? Are mediators like geophysical disturbances or climate involved? Solar activity effects on the world’s climate are too small and too slow to explain unlagged revolutionary behavior. Geomagnetic influence is somewhat more likely, but cycles of geomagnetism peak about two years later than solar cycles. Cosmic radiation, whose intensity is attenuated by solar magnetism, might be an effective variable.
  2. Physiological Variables: Which psychobiological structures underlying violence-from-below are responsive to such hidden stimulation? Neural structures for sensory or subsensory perception, for emotional processes, or for cognitive processes?
  3. Effect Size: How strong are solar correlated (external) factors compared to social-political dynamics (internal factors)? The external factors are apparently strong enough to emerge despite internal political dynamics. If the external effects were weak, they would be diluted.
  4. Effect Limitations: Why is solar maxima not always associated with violence-from-below? Why did high violence-from-below sometimes emerge despite low solar activity? Historical incidences of unexpectedly high or low violence — “unexpectedly” in view of deviating solar conditions — might be of foremost interest for investigating the range of heliodependence of social-political dynamics. 
  5. Concomitants: The role of revolutionary events in broader societal and historical contexts must be considered. Long wave oscillations have been claimed between liberal and conservative worldviews, and economic cycles of the famous Kondratiev type ought to be put into perspective. The connection between violence-from-below with conflicts of horizontal extension (international wars) needs investigation.
  6. Generalizations: Revolutionary movements are generally seen as expressions of new ideas rather than as blind valves releasing stowed-up aggressions: “Revolution is ... a war of ideas”. The question arises whether ideational activity in other domains, aside from the social-political domain, may oscillate with changing solar activity-related conditions.
  7. Present and Future: How strong is solar activity in 1996? We find ourselves in the midst of a solar minimum. Applying our above observations, we may be tempted to conclude that presently the probability of major world revolutions is low. The most recent turning point in contemporary history occurred in 1989, a solar maximum year. The 1989 revolution brought to an end an era whose beginning was the Bolshevik Revolution of 1917, a solar maximum year. The next solar maximum is expected for A.D. 2000 or 2001. The probability of revolutionary upheavals on this globe should then be greater. It seems advisable, however, to postpone predictions and to rather await further conclusions from research conducted by macroecologists, i.e., by a team of experts from all those disciplines of science, social science, and history whose contributions to solving the solar activity riddle are badly needed. Regrettably, such a team does not yet exist, but researchers in chronobiology/chronomedicine and in biogeomagnetics are not far from setting the stage: "An international and truly interdisciplinary effort will be required to ascertain the validity of biogeomagnetics ... to scrutinize physiological harbingers and their possible correlations with 'space weather' parameters."